An Investigation Into Two Alternative Approaches for the Identification of SFD Bearings for Aeroengine Analysis

Author:

Groves Keir1,Bonello Philip1

Affiliation:

1. The University of Manchester, Manchester, UK

Abstract

Identification techniques provide a means of efficiently implementing complex nonlinear bearing models in practical turbomachinery applications. This paper considers both identification from an advanced numerical model and identification from experimental tests. Identification from numerical models is essential at the design stage, where rapid simulation of the dynamic performance of a variety of designs is required. Experimental identification is useful to capture effects that are difficult to model (e.g. geometric imperfections, compressibility and its effect on cavitation). With regard to identification from a numerical model, it was shown in a previous paper that the numerical solution of the incompressible Reynolds equation may be replicated using Chebyshev polynomial fits. Tests were performed on a simple rotor-bearing configuration incorporating an advanced numerical bearing model. The identified model was found to be able to match the accuracy of the numerical solution to the Reynolds equation while requiring a fraction of the computation time. In the present work the SFD identification scheme is applied to a realistically-sized representative whole-aeroengine model. It is shown that using recently introduced nonlinear solvers combined with the identified high accuracy bearing models it is possible to run full engine rotor-dynamic simulations, in both the time and frequency domains, at a fraction of the previous computational cost. One major drawback of the Chebyshev technique is that it is not amenable to experimental identification of actual bearings. For this reason, a second identification approach, involving the use of neural networks, is considered in this paper. A test rig that enables empirical identification of SFD forces has been constructed and details of the building and operation of the test rig is presented. The method used to ascertain the training data required by the neural network identification scheme, is also described.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3