Conjugate Heat Transfer Analysis for a Film-Cooled Turbine Vane

Author:

Ni Ron Ho1,Humber William1,Fan George1,Johnson P. Dean2,Downs Jim2,Clark J. P.3,Koch P. J.3

Affiliation:

1. AeroDynamic Solutions, Inc., Pleasanton, CA

2. Florida Turbine Technologies, Inc., Jupiter, FL

3. Air Force Research Laboratory, Wright-Patterson AFB, OH

Abstract

A conjugate heat transfer analysis methodology has been defined and applied to an Air Force film cooled turbine vane consisting of 648 cooling holes. An unstructured computational mesh was used to model both the fluid and metal sides of the turbine vane. A summary of the numerical methods employed by Code Leo is provided along with a description of the coupling procedure employed between the fluid and heat conduction computations. Numerical simulations were conducted at multiple mesh resolutions to assess accuracy and repeatability. A detailed review is presented for the numerical solution obtained from a fine mesh consisting of 24 million elements (8 million solid, 16 million fluid) covering all 648 film holes. Results showed that cooled air from the film holes formed a protective layer around the airfoil surfaces and endwalls as intended. Low metal temperatures were present not only on the external surfaces exposed to hot gas, but also around the entrances to the film cooling holes. Cooled air was also observed to pile up along the pressure surface at mid-span. Solution convergence was achieved in approximately 15,000 iterations and 100 hours elapsed time on a dual-socket Intel E5504 workstation. The combination of fast turnaround time with accurate metal temperature prediction will enable conjugate heat transfer analysis to be easily incorporated into routine design processes to better address durability goals.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3