Influence of Unsteady Turbine Flow on the Performance of an Exhaust Diffuser

Author:

Kuschel Marcus1,Seume Joerg R.1

Affiliation:

1. Leibniz University Hannover, Hannover, Germany

Abstract

For the design of highly efficient turbine exhaust diffusers, it is important to take into account the unsteady flow field induced by the last turbine stage. A 1/10 scale model of a gas turbine exhaust diffuser consisting of an annular followed by a conical diffuser is used to investigate the influence of the unsteady flow conditions on the performance of the diffuser. To reproduce the outflow of the last turbine stage, a NACA profiled rotor is placed at the inlet of the diffuser. Measurements with 3D hot-wire probes are conducted in order to resolve the unsteady flow mechanisms inside the annular diffuser. Additionally, unsteady pressure transducers are installed at the shroud of the diffuser and on the surface of the NACA blades to detect rotating instabilities generated by the rotor. For operating points with a high flow-coefficient, vortices are generated at the tip of the blades. They support the boundary layer at the shroud with kinetic energy up to the half-length of the annular diffuser, which leads to a high pressure recovery. For operating conditions without generated vortices, the pressure recovery is significantly lower. The analysis of the pressure signals at the shroud and at the rotating blades with auto- and cross-correlations show that the number of generated vortices at the tip of the blades is lower than the number of blades. For the operating point with the highest flow coefficient, it can be shown that fourteen vortices are generated at the tip of the thirty blades. In modern RANS-model based CFD-codes, turbulence is modeled as isotropic flow. By comparing the three Reynolds Stress components behind the rotor it can be shown that the flow field especially in the wake of the blades is non-isotropic. This shows that diffuser flows should be modeled with turbulence models which account for non-isotropy.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3