Affiliation:
1. Harbin Institute of Technology, Harbin, Heilongjiang, China
Abstract
The mathematical model of film thickness is developed with considering the compressibility of the gas and the deformation of the foil in this paper. By employing the Newton-Raphson method and the finite difference method, the compressible gas lubricated Reynolds equation and the film thickness equation are solved coupling together. The static characteristics such as pressure distribution and film thickness distribution for equivalent bump foil stiffness model are obtained to verify the validation of the proposed method. The gas film thickness model is modified by modeling the top foil as the one dimension curved beam, to meet the case of the real physical model. The numerical results of this modified structural model are compared with the other finite element top foil models. It indicates that the pressure distribution for bump foil gas bearing is in good agreement with the test data.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献