Probabilistic Life Assessment of Turbine Vanes

Author:

Arkhipov Alexander N.1,Krasnovskiy Yevgeny E.1,Putchkov Igor V.1

Affiliation:

1. Alstom Power, Moscow, Russia

Abstract

Life of a gas turbine vane generally depends on different factors such as scatter of material properties, load variation and manufacturing tolerances. However, deterministic finite element (FE) life analysis gives just a discrete value typically based on the nominal or worst case conditions. It precludes considering sensitivity to the input parameters and obtaining the expected life range. To consider the possible variations of the input parameters from their nominal values, a probabilistic approach has been applied to compute the LCF (Low Cyclic Fatigue) and creep life distributions for the uncooled vane. The deterministic 3D FE life assessment of the gas turbine components is based on the input data such as physical and mechanical properties of the base material and coating at operating temperatures, nominal geometry of the component, thermal and mechanical loadings. Each of the above mentioned inputs has its own scatter band characterized either by average and minimum values of mechanical properties (tensile strength, LCF, creep) or by variations of manufacturing tolerances; thermal boundary conditions and gas pressure distribution. The probabilistic life analysis has been performed in order to assess individual impact of each input on vane’s life scatter. LCF and creep life distributions as well as variation of the base metal oxidation layer thickness have been obtained for each scatter factor and for their overall contribution. It is seen from results that LCF and creep lives of the analyzed vane have been influenced mainly by material properties and secondarily by OTDF (hot gas temperature variation in the circumferential direction) and uncertainties of thermal boundary conditions, which depended on the operation conditions of the engine. Manufacturing tolerances and alternation of ambient air temperature in the compressor intake have the lowest impact. The derived model is useful for the risk analysis or maintenance planning. For instance, it has been shown how probability of small fatigue crack indication in one vane can be extended onto the overall probability for the failure detection of n vanes at the stator stage during regular inspection. The probability of micro crack growth due to creep after the determined amount of operating hours for the single vane may be also redefined into the overall stage probability for the detection of n such vanes. To perform validation, normalized field data have been used for comparison with the analytical predictions. Good correlations between the field data and analytical predictions have been shown.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3