Experimental Investigations on Cooling Air Ejection at a Straight Turbine Cascade Using PIV and QLS

Author:

Freund Oliver1,Rehder Hans-Juergen2,Schaefer Philipp2,Roehle Ingo2

Affiliation:

1. Leibniz Universita¨t Hannover, Hannover, Germany

2. German Aerospace Center, Go¨ttingen, Germany

Abstract

Due to the high turbine inlet temperatures in modern aircraft engines the adoption of several cooling techniques in the first turbine blade rows is state of the art. For this reason the influence of cooling air ejection on the main flow is in the interest of scientists. In this paper experimental and numerical investigations on the trailing edge cooling air ejection at a stator profile are presented. All measurements are performed at the Straight Cascade Wind tunnel Go¨ttingen. To verify the influence of the cooling air flow on the flow field, the velocity field is measured by Particle Image Velocimetry (PIV). The development of the cooling air concentration is analyzed by utilizing the Quantitative Light Sheet (QLS) technique. For validation purposes the QLS results are compared to CO2 concentration measurements. Both measurement techniques are in good agreement with each other. One of the most important advantages of PIV and QLS is the possibility of combining them at the same test bed due to the identical experimental setup. The experimental investigations are supported by numerical simulations based on the numerical code TRACE. Both the numerical results as well as the experimental results prove the reduction of the trailing edge shock by increasing the coolant mass flow ratio.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3