Measuring Knee Joint Laxity in Three Degrees-of-Freedom In Vivo Using a Robotics- and Image-Based Technology

Author:

Kümmerlin Jana1,Fabro Hannah Katharina1,Pedersen Peter Heide2,Jensen Kenneth Krogh3,Pedersen Dennis4,Andersen Michael Skipper5

Affiliation:

1. Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, Galgenbergstraße 30, Regensburg D-93053, Germany

2. Department of Orthopedic Surgery, Aalborg University Hospital, Hobrovej 18-22, DK-9000, Denmark

3. Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, Aalborg DK-9000, Denmark

4. Regional Development, Central Denmark Region, Skottenborg 26, Viburg DK-8800, Denmark

5. Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg DK-9220, Denmark

Abstract

Abstract Accurate and reliable information about three-dimensional (3D) knee joint laxity can prevent misdiagnosis and avoid incorrect treatments. Nevertheless, knee laxity assessments presented in the literature suffer from significant drawbacks such as soft tissue artifacts, restricting the knee within the measurement, and the absence of quantitative knee ligament property information. In this study, we demonstrated the applicability of a novel methodology for measuring 3D knee laxity, combining robotics- and image-based technology. As such technology has never been applied to healthy living subjects, the aims of this study were to develop novel technology to measure 3D knee laxity in vivo and to provide proof-of-concept 3D knee laxity measurements. To measure tibiofemoral movements, four healthy subjects were placed on a custom-built arthrometer located inside a low dose biplanar X-ray system with an approximately 60 deg knee flexion angle. Anteroposterior and mediolateral translation as well as internal and external rotation loads were subsequently applied to the unconstrained leg, which was placed inside a pneumatic cast boot. Bone contours were segmented in the obtained X-rays, to which subject-specific bone geometries from magnetic resonance imaging (MRI) scans were registered. Afterward, tibiofemoral poses were computed. Measurements of primary and secondary laxity revealed considerable interpersonal differences. The method differs from those available by the ability to accurately track secondary laxity of the unrestricted knee and to apply coupled forces in multiple planes. Our methodology can provide reliable information for academic knee ligament research as well as for clinical diagnostics in the future.

Funder

Aalborg Universitet

Styrelsen for Forskning og Innovation

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3