Affiliation:
1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824
Abstract
Abstract
In this theoretical study, the vibration suppression, energy transfer, and bifurcation characteristics, as a function of dimensionless parameters, are investigated for an inerter-based pendulum vibration absorber (IPVA) attached to a linear single-degree-of-freedom spring-mass-damper system (primary structure), subject to white noise excitation. A perturbation method is introduced to detect and track the bifurcation points of the system. It is shown that the marginal probability density function of the pendulum angular displacement undergoes a P-bifurcation at critical parameter values, transitioning from monomodality to bi-modality. A cumulant-neglect technique is used to predict the mean squares of the system, which are compared to the response of a linear system without the IPVA to quantify the vibration suppression. It is shown that the IPVA leads to effective vibration mitigation of the structure in the neighborhood of the P-bifurcation, which is achieved by transferring the kinetic energy of the structure to the pendulum. The results are validated by a Monte Carlo simulation that is used to numerically approximate the marginal probability density function for the pendulum angle as well as the mean squares.
Funder
Michigan State University
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献