The Mechanics of Ideal Forming

Author:

Chung K.1,Richmond O.1

Affiliation:

1. Alcoa Laboratories, Alcoa Technical Center, Alcoa Center, PA 15069

Abstract

In this paper, the mechanics of ideal forming theory are summarized for general, three-dimensional, nonsteady processes. This theory has been developed for the initial stages of designing deformation processes. The objectives is to directly determine configurations, both initial and intermediate, that are required to ideally form a specified final shape. In the proposed theory, material elements are prescribed to deform along minimum plastic work paths, assuming that the materials have optimum formabilities in such paths. Then, the ideal forming processes are obtained so as to have the most uniform strain distributions in final products without shear tractions. As solutions, the theory provides the evolution of intermediate shapes of products and external forces as well as optimum strain distributions. Since the requirement of ideal forming to follow minimum work paths involves an over determination of the field equations, the theory places constraints on constitutive and boundary conditions. For example, tool interfaces must be frictionless and yield conditions must have vertices to achieve self-equilibrating three-dimensional deformations in most cases. Despite these constraints, the theory is believed to provide a useful starting point for deformation process design.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isogeometric algorithm for one-step inverse forming of sheet metal;Computer Methods in Applied Mechanics and Engineering;2023-02

2. Design of Streamline Dies for Drawing Driven by Fracture;Solid State Phenomena;2019-08

3. Strain-Rate-Based Plastic Potentials for Polycrystalline Materials;Solid Mechanics and Its Applications;2018-07-19

4. Ideal flow theory for the double – shearing model as a basis for metal forming design;IOP Conference Series: Materials Science and Engineering;2018-02

5. Stress Update Formulation;Basics of Continuum Plasticity;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3