Free-Stream Turbulence Effects on Local Heat Transfer from a Sphere

Author:

Newman L. B.1,Sparrow E. M.1,Eckert E. R. G.1

Affiliation:

1. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

Abstract

Experiments involving both heat-transfer and turbulence-field measurements were performed to determine the influence of free-stream turbulence on the local heat transfer from a sphere situated in a forced-convection airflow. The research was facilitated by a miniature heat-flux sensor which could be positioned at any circumferential location on the equator of the sphere. Turbulence grids were employed to generate free-stream turbulence with intensities of up to 9.4 percent. The Reynolds-number range of the experiments was from 20,000 to 62,000. The results indicate that the local heat flux in the forward region of the sphere is uninfluenced by free-stream turbulence levels of up to about 5 percent. For higher turbulence levels, the heat-flux increases with the turbulence intensity, the greatest heat-flux augmentation found here being about 15 percent. Furthermore, at the higher turbulence intensities, there appears to be a departure from the half-power Reynolds-number dependence of the stagnation-point Nusselt number. Turbulent separation occurred at Reynolds numbers of 42,000 and 62,000 for a turbulence level of 9.4 percent, these values being well below the transition Reynolds number of 2 × 105 for a sphere situated in a low-turbulence flow.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3