Affiliation:
1. Center for Advanced Materials, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
2. Digital Equipment Corporation, Cupertino, CA 95014
Abstract
The creep behavior of air-cooled and liquid nitrogen-quenched soldered joints of 60/40 Sn-Pb at 65°C has been studied. The stress exponent, n, in the power law, γ˙ (steady state strain rate) ∝σn (applied stress), changes from a value of about 6 to values of 2 to 3, as γ˙ decreases below 10−4 in/in per second. This result, combined with the authors’ previous stepped load creep test results, indicates a transition of the creep deformation mechanism from conventional dislocation climb to superplastic grain boundary sliding. The superplastic creep of the soldered joints is ascribed to their non-lamellar microstructure due to their fast cooling rate. During creep deformation, recrystallization of the soldered joints occurs, causing softening.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献