Affiliation:
1. Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455
Abstract
The microstructure of tissues and tissue equivalents (TEs) plays a critical role in determining the mechanical properties thereof. One of the key challenges in constitutive modeling of TEs is incorporating the kinematics at both the macroscopic and the microscopic scale. Models of fibrous microstructure commonly assume fibrils to move homogeneously, that is affine with the macroscopic deformation. While intuitive for situations of fibril-matrix load transfer, the relevance of the affine assumption is less clear when primary load transfer is from fibril to fibril. The microstructure of TEs is a hydrated network of collagen fibrils, making its microstructural kinematics an open question. Numerical simulation of uniaxial extensile behavior in planar TE networks was performed with fibril kinematics dictated by the network model and by the affine model. The average fibril orientation evolved similarly with strain for both models. The individual fibril kinematics, however, were markedly different. There was no correlation between fibril strain and orientation in the network model, and fibril strains were contained by extensive reorientation. As a result, the macroscopic stress given by the network model was roughly threefold lower than the affine model. Also, the network model showed a toe region, where fibril reorientation precluded the development of significant fibril strain. We conclude that network fibril kinematics are not governed by affine principles, an important consideration in the understanding of tissue and TE mechanics, especially when load bearing is primarily by an interconnected fibril network.
Subject
Physiology (medical),Biomedical Engineering
Reference61 articles.
1. Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential in vivo;Bell;Proc. Natl. Acad. Sci. U.S.A.
2. Self-Organization of Tissue-Equivalents: The Nature and Role of Contact Guidance;Tranquillo;Biochem. Soc. Symp.
3. Tissue Engineering Science–Consequences of Cell Traction Force;Tranquillo;Cytotechnology
4. Collagen Fibrillogenesis;Veis;Connect. Tissue Res.
5. Collagen Fibril Formation;Kadler;Biophys. J.
Cited by
190 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献