The Inception of Cavitation on Isolated Surface Irregularities

Author:

Holl J. W.1

Affiliation:

1. Ordnance Research Laboratory, The Pennsylvania State University, University Park, Pa.

Abstract

The inception of cavitation on isolated surface irregularities imbedded in a turbulent boundary layer is investigated experimentally and theoretically. Two families of cylindrical roughness elements having constant cross sections are studied. One family has a circular-arc cross section. The other family has a triangular cross section and was selected to simulate the separating flow which is typical of an actual surface irregularity. The theoretical minimum-pressure coefficient for the circular-arc irregularities is determined as a function of the relative height of roughness for several values of the boundary-layer shape parameter. Cavitation tests in the water tunnels of the Ordnance Research Laboratory on roughness elements ranging from 0.002 to 0.5 in. in height indicate that the incipient-cavitation number of an isolated surface irregularity is dependent upon the relative height of roughness, the boundary-layer shape parameter, the velocity, and other variables as yet unknown.

Publisher

ASME International

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of recent advances in the effects of surface and interface properties on marine propellers;Friction;2023-05-05

2. Cavitation control using Cylindrical Cavitating-bubble Generators (CCGs): Experiments on a benchmark CAV2003 hydrofoil;International Journal of Multiphase Flow;2020-04

3. Hydrodynamically Induced Cavitation and Bubble Noise;Mechanics of Flow-Induced Sound and Vibration, Volume 2;2017

4. Cavitation in hydroturbine elements and its diagnostics by modern optical techniques;Proceeding of THMT-15. Proceedings of the Eighth International Symposium On Turbulence Heat and Mass Transfer;2015

5. Cavitation characteristics of offset-into-flow and effect of aeration;Journal of Hydraulic Research;2010-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3