A Dynamic Wear Model for Micro-Grooved Water-Lubricated Bearings Under Transient Mixed Lubrication Condition

Author:

Xiang Guo1,Han Yanfeng1,He Tao2,Wang Jiaxu1,Xiao Ke1

Affiliation:

1. State Key Laboratory of Mechanical Transmission, College of Mechanical Engineering, Chongqing University, Chongqing 400044, China

2. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

Abstract

Abstract The study presents a dynamic wear model for micro-grooved water-lubricated bearings considering the transient mixed elastohydrodynamic lubrication (mixed-EHL) condition. In the established model, the modified Archard wear model and the mixed-EHL model are bridged to study the transient interdependent relationship between the sliding wear behavior and the mixed-EHL performance. In order to consider the effect of the transient mixed-EHL performance on the sliding wear, the Archard model is extended to include the time-varying wear coefficient based on the fatigue concept. To verify the presented model, the comparisons with the experimental results available in the literatures have been conducted. In this study, the evolution of the wear and mixed-EHL performance distribution over time is predicted, and the impact of the radial clearance, boundary friction coefficient, and surface parameters on the numerical predictions is evaluated. The simulation results reveal that the worn region moves toward the rotational direction slowly. The simulation results also reveal that the wear rate and the wear coefficient first decrease considerably, and then decrease gently, and the sliding wear geometry promotes the hydrodynamic effects and reduces the asperity contact during the operation. Furthermore, the parametric study demonstrates that dynamic wear and mixed-EHL performance is sensitive to the radial clearance, boundary friction coefficient, and surface parameters.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3