A Heat Pump and Thermal Storage System for Solar Heating and Cooling Based on the Reaction of Calcium Chloride and Methanol Vapor

Author:

Offenhartz P. O’D.1,Brown F. C.1,Mar R. W.2,Carling R. W.2

Affiliation:

1. EIC Corporation, Newton, MA 02158

2. Sandia Laboratories, Livermore, CA 94550

Abstract

Thermodynamic, kinetic, heat transfer and mass transfer data are presented on the reaction of CaCl2 and CH3OH vapor to form solid-phase CaCl2•2CH3OH. These data demonstrate the suitability of the reaction for storing solar energy, and for pumping heat, either for use in space heating (at a solar coefficient of performance > 1), air conditioning, or both. CaCl2 reacts with CH3OH to form CaCl2•2CH3OH with an enthalpy and entropy of reaction 51.7 kJ (mole CH3OH)−1 and 126 J deg−1 (mole CH3OH)−1, respectively. Reaction kinetics close to equilibrium are complex, although the reaction is first order when the temperature of the reacting salt is far from equilibrium. Heat transfer through the salt appears to follow the Russel equation, and reaction rates are not limited by mass transfer in a well-designed system. In the heating mode, a solar coefficient of performance (COP) of about 1.6 should be achievable if the entire heat of CH3OH condensation is used; this could permit a substantial reduction in solar collector area for a given amount of heat delivered to the load. In the cooling mode, the COP should be about 0.6. The system should be capable of pumping heat from an ambient source of 0°C to an indoor air duct temperature above 40°C, or from an indoor chiller at 5°C to an outdoor ambient air sink. The required solar collector temperature is below 140°C, and the energy storage density is about 4 × 105 kJ m−3.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3