A Method for Extracting and Thickening a Mid-Surface of a 3D Thin Object Represented in NURBS

Author:

Fischer A.1,Wang K. K.2

Affiliation:

1. Technion-Israel Institute of Technology, Haifa, Israel

2. CIMP, Cornell University, Ithaca, NY

Abstract

In analyses of manufacturing processes such as injection molding of plastics or die casting of metals, the geometry of a typical 3D thin-walled structure is usually represented by an aggregation of mid-surfaces. This geometric simplification associated with assigned part thicknesses significantly reduces the computational complexity in engineering analysis (e.g., flow and solidification simulations). On the other hand, it complicates data transfer from and back to any CAD/CAM system in which objects are not represented by their mid-surfaces. As a part of an overall effort to develop a feature-based system for concurrent design and manufacturing of complex thin parts, a new algorithm has been developed for representing both the objects and their mid-surfaces. This algorithm can extract a mid-surface representation from a complex 3D thin object and then reconstruct the object from the modified mid-surface according to the analysis results. The objects consist of sculptured features with tubular topology and are represented by NURBS. The proposed method is based on offsetting techniques and deals directly with the control polygons of the object boundaries and of the mid-surfaces. The algorithms are based on offsetting techniques since there is a high correlation between medial surfaces and offset surfaces. In the case of swept features, simplification is achieved by using 2D rather than 3D techniques.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3