Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting

Author:

Herran C. Leigh1,Wang Wei1,Huang Yong1,Mironov Vladimir2,Markwald Roger2

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634

2. Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425

Abstract

Microspheres or droplets are increasingly finding various biomedical applications as drug microspheres and multicellular spheroids. Single nozzle-based continuous jetting with the help of acoustic excitation and/or carrier stream is a basic process for monodisperse microsphere fabrication. Precise control of microsphere size and size distribution in single nozzle jetting is still of great manufacturing interest. The objective of this study is to numerically model a glycerol-water microsphere fabrication process during acoustic excitation-based single nozzle continuous jetting. Using a volume of fluid method, this study has investigated the effects of material properties and fabrication conditions such as the acoustic excitation frequency and amplitude and the carrier stream velocity on the size of microspheres fabricated. (1) The microsphere diameter decreases as the glycerol volume percentage increases. (2) The excitation frequency and pressure have a pronounced effect on the microsphere size. The microsphere diameter decreases as the excitation frequency increases, and the microsphere diameter increases with the excitation pressure amplitude. (3) The microsphere size decreases as the carrier stream velocity increases.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3