Combined Joule-Humphrey-Recuperator Cycle: Performance and Parametric Analysis Evaluation Toward More Efficient Air Transportation

Author:

Saavedra Jorge1ORCID,Cadarso Luis1

Affiliation:

1. Universidad Rey Juan Carlos , Fuenlabrada 28943, Madrid, Spain

Abstract

Abstract A three-stream combined Joule-Humphrey cycle that employs a heat recovery stream to function as a recuperator is presented. Based on an in-house developed thermodynamic performance tool, the operation of a modified dual-shaft turbofan engine is proposed. The engine core is modified by adding an intercooler and a reheating chamber to approach isothermal compression and expansion processes. A fraction of the primary flow is introduced into a reheat chamber that uses rotating detonation combustion (RDC) technology. The outflow of the RDC is then merged with the rest of the nucleus current before being discharged to the next turbine stage. The overall system behavior is captured by means of a nonlinear mathematical model featuring eight decision variables, including mass flow rates and compression ratios. A parametric analysis identifies the operational and performance envelope of the proposed engine concept. Ultimately, the model is endowed with an objective function, which includes global efficiency and thrust looking for an operation regime that boosts the thermodynamic performance. A generalized reduced gradient based algorithm is used to solve the nonlinear model, where each iteration solves a linearly constrained subproblem to generate a search direction. The performance and operational envelope presented here could be used as guidance for others considering the implementation of any of the discussed Joule cycle modifications or assessing the cost-effective balance of their use.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference74 articles.

1. An Outlook on the Future of Turbofans and Aircraft Propulsion Systems,2019

2. Analysis of the Actual Thermodynamic Cycle of the Detonation Engine;Appl. Thermal Eng.,2016

3. Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor;Appl. Energy,2017

4. Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts;J. Propul. Power,2014

5. Performance and Operating Characteristics of Micro Gas Turbine Driven by Pulse, Pressure Gain Combustor,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3