A New Technique to Determine Convection Coefficients With Flow Through Particle Beds

Author:

Nie Xiaodong1,Evitts Richard1,Besant Robert2,Bolster John1

Affiliation:

1. Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada

2. Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada

Abstract

Abstract A new method for determining the heat transfer coefficient for air flowing steadily through beds of particles is presented. In this technique, a step change in the inlet air temperature is applied to a small test bed and temperature distributions in the bed and at the air outlet are sampled over a short time period. The convective heat transfer coefficient is determined using data from the convective heat transfer process in the bed where the analysis includes the partial differential equation that describes the transient energy storage in the particles within the bed. The analysis is performed for a short time duration when the temperature distribution in the particle bed is almost linear along the axis of the bed. This time period permits the most accurate determination of the heat transfer coefficient using the data. Using beds of spherical particles a new correlation is developed for the Nusselt number versus the Reynolds number (5<Redh<280) and includes the uncertainty bounds. This new correlation compares well with correlations developed by some other researchers for similar spherical particle beds.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference21 articles.

1. Transport Phenomena in Heterogeneous Media Based on Volume Averaging Theory;Travkin;Adv. Heat Transfer

2. Laminar Flow Forced Convection in Ducts;Shah

3. Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles;Whitaker;AIChE J.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3