The Use of an Equivalent Temperature Field to Emulate an Induced Residual Stress Field in a Rotating Disk Due to Full Or Partial Rotational Autofrettage

Author:

Perl Mordechai1,Kamal Seikh Mustafa2,Mulera Solomon2

Affiliation:

1. Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

2. Department of Mechanical Engineering, Tezpur University, Napaam, Tezpur 784028, Assam, India

Abstract

Abstract The evaluation of equivalent temperature fields for cylindrical and spherical pressure vessels to imitate autofrettage induced residual stresses has been successfully implemented in studying crack growth in autofrettaged vessels by the finite element method. Rotational autofrettage is a recent method that can be employed for strengthening hollow disks used in many turbomachinery. The evaluation of the equivalent temperature field becomes pivotal in the performance assessment of autofrettaged cracked disks subjected to high rotational speed. In this work, an equivalent thermal loading method for emulating the residual stress field in a hollow rotating disk, induced by full or partial rotational autofrettage in a finite element analysis is suggested. An analytical, or a numerical discrete solution, evaluating the equivalent temperature field for an arbitrary axisymmetric residual stress field, induced in a rotating disk due to rotational autofrettage, is developed. This solution is implemented in a finite element analysis to emulate the original rotational autofrettage induced residual stresses in a typical rotating disk. Applying the equivalent temperature field, the residual stresses obtained in the finite element analysis, are further corroborated with the original residual stress field introduced by rotational autofrettage. It is found that the developed equivalent temperature fields excellently reproduce the residual stress fields, within less than 1%, induced by both full or partial rotational autofrettage.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3