Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame

Author:

Yılmaz İlker1

Affiliation:

1. Department of Airframe and Powerplant, College of Aviation, Erciyes University, Kayseri 38039, Turkey e-mail:

Abstract

This paper presents the effect of swirl number on combustion characteristics such as temperature, velocity, gas concentrations in a natural gas diffusion flame. Numerial simulations carried out using the commercial computational fluid dynamics (CFD) code, Fluent by choosing appropriate model parameters. The combustion reaction scheme in the flame region was modeled using eddy dissipation model with one step global reaction scheme. A standard k-ε turbulence model for turbulent closure and P-I radiation model for flame radiation inside the combustor is used in the numerical simulations. In order to investigate the swirling effect on the combustion characteristics, seven different swirl numbers including 0; 0.1; 0.2; 0.3; 0.4; 0.5; and 0.6 are used in the study. Numerical results are validated and compared with the published experimental and simulation results. A good consistency is found between the present results and those published measurement and simulation results in the available literature. The results shown that the combustion characteristics such as the flame temperature, the gas concentrations including CO2, H2O, O2, and CH4 are strongly affected by the swirl number. Depending on the degree of swirl, the fluid dynamics behavior of natural gas diffusion flame including axial velocity distribution, central recirculation zone (CTRZ) and external recirculation zone (ETRZ) were also strongly affected.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference34 articles.

1. Prediction of a High Swirled Natural Gas Diffusion Flame Using a PDF Model;Fuel,2009

2. Radiative Heat Transfer in Natural Gas-Fired Furnaces;Int. J. Heat Mass Trans.,2000

3. Wilkes, N. S., Guilbert, P. W., Shepherd, C. M., and Simcox, S., 1989, “The Application of Harwell-Flow 3D to Combustion Models,” Atomic Energy Authority Report, Harwell, UK, Paper No. AERE-R13508.

4. Fluid-Dynamic and NOx Computation in Swirl Burners;Int. J. Heat Mass Transfer,2011

5. Study on NOx Formation in CH4/Air Jet Combustion;Chin. J. Chem. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3