The Importance of Shape in Particle Rebound Behaviors

Author:

Wilson Jacob1,Qiao Rui1,Kappes Matthew2,Loebig James2,Clarkson Rory3

Affiliation:

1. Virginia Tech Department of Mechanical Engineering, , Blacksburg, VA 24061

2. Rolls-Royce Corp. , Indianapolis, IN 46225

3. Rolls-Royce Corp. , Derby DE24 8BJ , UK

Abstract

Abstract Physics-based particle rebound models are essential for the accurate tracking of particles in aero engines. Current models are often informed by analysis of spherical particle impact, but particles ingested in engines typically feature edges and corners. Understanding the effects of particle shape on rebound behavior is critical for ascertaining the range of validity of existing models and for developing improved models. Here, we report on first-principle simulations of cubical particles impacting Ti-6Al-4V targets. Our simulations reveal that, in the case of normal impact at a given incident speed, the coefficient of restitution (CoR) of cubes exhibits significant scattering. The scattering and median of computed CoR show good agreement with recent experiments using sand particles of the same volume-based size, sphericity, and incident speed. Comparison with spheres impacting the same target shows that the median CoR of cubes is significantly lower than that of spheres. Further, the rebound of cubes features significant rotation and transverse velocity, which can account for ∼60% of a rebounding cube’s energy but are negligible modes of energy transfer in impacts involving spheres. We identify that the moment arm length, a parameter that characterizes the mass distribution of angular particles impacting a target, plays a key role in particle rebound, and its distribution is strongly correlated with rebound stochasticity. These findings can benefit the development of physics-based low-order models of angular particle rebound.

Funder

Rolls-Royce

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3