A Damage Evaluation Model of Turbine Blade for Gas Turbine

Author:

Zhou Dengji1,Wei Tingting1,Zhang Huisheng1,Ma Shixi1,Weng Shilie1

Affiliation:

1. Gas Turbine Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Current maintenance, having a great impact on the safety, reliability and economics of a gas turbine, becomes the major obstacle for the application of gas turbines in energy field. An effective solution is to process condition based maintenance (CBM) thoroughly for gas turbines. Maintenance of high temperature blade, accounting for the most of the maintenance costs and time, is the crucial section of gas turbine maintenance. The suggested life of high temperature blade by original equipment manufacturer (OEM) is based on several certain operating conditions, which is used for time based maintenance (TBM). Thus, for the requirement of gas turbine CBM, a damage evaluation model is demanded to estimate the life consumption online. A physics-based model is built, consisting of thermodynamic performance simulation model, stress estimation model, thermal estimation model, and interactive damage analysis model. Unmeasured parameters are simulated by the thermodynamic performance simulation model, as the input of the stress estimation model and the thermal estimation model. Due to the ability to analyze online data, this model can be used to calculate online damage and support CBM decision. Then the stress and temperature distribution of blades will become as the input of the creep damage analysis model and the fatigue damage analysis model. The interactive damage of blades will be evaluated based on the creep and fatigue analysis results. To validate this physics-based model, it is used to calculate the lifes of high temperature blade under several certain operating conditions. And the results are compared to the suggestion value of OEM. An application case is designed to evaluate the application effect of this model. The result shows that the relative error of this model is less than 10.4% in selected cases. And it can cut overhaul costs and increase the availability of gas turbines significantly. Finally, a simple application of this model is proposed to show its functions. The physical-based damage evaluation model proposed in this paper is found to be a useful tool to tracing the online life consumption of a high temperature blade, to support the implementation of CBM for gas turbines, and to guarantee the reliability of gas turbines with lowest maintenance costs.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3