Control Design for a Marine Hydrokinetic Cycloturbine Vehicle

Author:

Goldschmidt Margalit Z.1,Horn Joseph2,Jonson Michael L.1

Affiliation:

1. Applied Research Laboratory, The Pennsylvania State University, University Park , PA 16802

2. The Pennsylvania State University, University Park , PA 16802

Abstract

Abstract Marine Hydrokinetic (MHK) cycloturbines generate sustainable power by exploiting tidal currents. By powering the turbines and using pitching foils for control, a vehicle comprised of MHK cycloturbines also has the ability to station keep and maneuver. The vehicle consists of four counter-rotating cycloturbines, with hydrofoils oriented perpendicular to the flow in a paddlewheel configuration. Lift and drag generated from these foils sum together to produce thrust. An experimentally tuned simulation model that solves the six-degrees-of-freedom rigid body equations of motion for the MHK vehicle subject to hydrodynamic, hydrostatic, and propulsive forces is used to aid the design of vehicle controllers. Global feedback controllers are initially designed by applying classical control methods to an approximate linear model of the system dynamics. A higher performing nonlinear controller is designed using the nonlinear dynamic inversion (NDI) method. NDI accounts for the nonlinearities of the MHK system and therefore is suitable for a wide range of operating conditions. The response of the classical and NDI controllers to speed, depth, roll, pitch, and yaw commands are evaluated and compared in simulation. The classical controller outperforms the NDI controller for small amplitude maneuvers, although the degradation with NDI is minor. However, in the nonlinear operating regime the NDI controller outperforms the classical controller and the classical controller exhibits instability.

Funder

Advanced Research Projects Agency

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference18 articles.

1. Radiated Sound From a Cross-Flow Turbine With Pitching Hydrofoils,2017

2. A Viscous Vortex Lattice Method for Analysis of Cross-Flow Propellers and Turbines;Renewable Energy,2019

3. Autonomous Hover Capability of Cycloidal-Rotor Micro Air Vehicle,2013

4. Power-Tracking Control for Cross-Flow Turbines;J. Renewable Sustainable Energy,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decentralized multi-variable successive loop closure;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3