Exploration of Translational Joint Design Using Corrugated Flexure Units With Bézier Curve Segments

Author:

Wang Nianfeng1,Zhang Zhiyuan2,Yue Fan2,Zhang Xianmin1

Affiliation:

1. Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China e-mail:

2. Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China

Abstract

In order to satisfy particular design specifications, shape variation for limited geometric envelopes is often employed to alter the elastic properties of flexure joints. This paper introduces an analytical stiffness matrix method to model a new type of corrugated flexure (CF) beam with cubic Bézier curve segments. The cubic Bézier curves are used to depict the segments combined to form CF beam and translational joint. Mohr's integral is applied to derive the local-frame compliance matrix of the cubic Bézier curve segment. The global-frame compliance matrices of the CF unit and the CF beam with cubic Bézier curve segments are further formed by stiffness matrix method, which are confirmed by finite element analysis (FEA). The control points of Bézier curve are chosen as optimization parameters to identify the optimal segment shape, which maximizes both high off-axis/axial stiffness ratio and large axial displacements of translational joint. The results of experimental study on the optimum translational joint design validate the proposed modeling and optimization method.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3