Modeling of Thermally Driven Resonance at Multiscales

Author:

Srinivasan P.1,Mark Spearing S.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Monash University, Clayton VIC 3800, Australia e-mail:

2. School of Engineering Sciences, University of Southampton, Southampton SO171BJ, UK

Abstract

Abstract Understanding the mechanisms of thermally driven resonance is a key for designing many engineering and physical systems especially at small scales. This paper focuses on the modeling aspects of such phenomena using the classical Fourier diffusion theory. Critical analysis revealed that the thermally induced resonant excitation is characterized by the generation of multiple wave trains with a constant phase shift as opposed to the single standing wave generated in a mechanically driven resonant response. The hypothesis proposed herein, underpin a broad range of scientific and technological developments and the analytical treatment enables design of thermally driven resonant systems with improved performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference37 articles.

1. Weighing of Biomolecules, Single Cells and Single Nano Particles in Fluid;Burg;Nature (London)

2. Nonmonotonic Energy Dissipation in Microfluidic Resonators;Burg;Phys. Rev. Lett.

3. An Integrated Microelectromechanical Resonant Output Gyroscope;Seshia

4. Surface Micromachined Resonant Accelerometer;Roessig;Int. Conf. Solid-State Sens. Actuators

5. A Vacuum Packaged Surface Micromachined Resonant Accelerometer;Seshia;J. Microelectromech. Syst.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature Survey of Numerical Heat Transfer (2010–2011);Numerical Heat Transfer, Part A: Applications;2013-09-15

2. Modeling the distribution of phonon density for designing high quality thermal resonators;International Journal of Heat and Mass Transfer;2012-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3