Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing

Author:

Rubio Dario1,San Andres Luis2

Affiliation:

1. Bechtel Corporation, 3000 Post Oak Boulevard, Houston, TX 77056

2. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

Abstract

High performance oil-free turbomachinery implements gas foil bearings (FBs) to improve mechanical efficiency in compact units. FB design, however, is still largely empirical due to its mechanical complexity. The paper provides test results for the structural parameters in a bump-type foil bearing. The stiffness and damping (Coulomb or viscous type) coefficients characterize the bearing compliant structure. The test bearing, 38.1mm in diameter and length, consists of a thin top foil supported on bump-foil strips. A prior investigation identified the stiffness due to static loads. Presently, the test FB is mounted on a non-rotating stiff shaft and a shaker exerts single frequency loads on the bearing. The dynamic tests are conducted at shaft surface temperatures from 25to75°C. Time and frequency domain methods are implemented to determine the FB parameters from the recorded periodic load and bearing motions. Both methods deliver identical parameters. The dry friction coefficient ranges from 0.05 to 0.20, increasing as the amplitude of load increases. The recorded motions evidence a resonance at the system natural frequency, i.e., null damping. The test derived equivalent viscous damping is inversely proportional to the motion amplitude and excitation frequency. The characteristic stick-slip of dry friction is dominant at small amplitude dynamic loads leading to a hardening effect (stiffening) of the FB structure. The operating temperature produces shaft growth generating a bearing preload. However, the temperature does not significantly affect the identified FB parameters, albeit the experimental range was too small considering the bearings intended use in industry.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3