Probabilistic Optimal Design Using Successive Surrogate Probability Density Functions

Author:

Eggert R. J.1,Mayne R. W.2

Affiliation:

1. Mechanical Engineering Department, Union College, Schenectady, NY

2. Department of Mechanical & Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY

Abstract

Probabilistic optimization using the moment matching method and the simulation optimization method are discussed and compared to conventional deterministic optimization. A new approach based on successively approximating probability density functions, using recursive quadratic programming for the optimization process, is described. This approach incorporates the speed and robustness of analytical probability density functions and improves accuracy by considering simulation results. Theoretical considerations and an example problem illustrate the features of the approach. The paper closes with a discussion of an objective function formulation which includes the expected cost of design constraint failure.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical moment based approximation for robust design optimization;Structural and Multidisciplinary Optimization;2018-06-25

2. Cost efficient robust global supply chain system design under uncertainty;The International Journal of Advanced Manufacturing Technology;2015-10-27

3. Robust Design Method Using Adjustable Control Factors;International Journal of Automation Technology;2014-05-05

4. Robust Design Optimization to Account for Uncertainty in the Structural Design Process;Topics on the Dynamics of Civil Structures, Volume 1;2012

5. Reliability-based robust design optimization: A multi-objective framework using hybrid quality loss function;Quality and Reliability Engineering International;2009-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3