A Constraint-Based Approach to the Composition Relation Management of a Product Class in Design

Author:

Yvars Pierre-Alain1

Affiliation:

1. LISMMA, Institut Supérieur de Mécanique de Paris (SupMeca), 3 rue Fernand Hainaut, 93407 Saint Ouen Cedex, France

Abstract

The choice of solution, which a systems architect is confronted with within the framework of a product structure definition, can very quickly prove to be a thorny problem owing to the possible combinatorial system. In this paper, we will offer an alternative resting on the utilization of constraint-based programming techniques for representing and managing such complexity. More precisely, we will dwell on the presentation of a constraint-based approach to the composition relation management of a product class in design. After setting forth all the potential of the constraint-based approach, we will formally explain, in more detail, the six types of relations that seem to be essential to building a class of products. The approach is based on a three-level architectural model. The first level concerns the product model as such, the second supplies a formal representation of this model, whereas the third consists of rendering an arithmetic constraint-based approach to the intermediate model. We will use the discrete constraint satisfaction problems for operating and solving the latter. Our overall approach, from product modeling to resolution, is intended to be a generic one and the case in point will be the design of a functional pivot link between a connecting rod and a piston. The architect can subsequently make his own choices and the tool will automate their propagation by means of the constraint network modeling the problem. A dimensioning architectural model is, thus, obtained in compliance with the original list of requirements.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference37 articles.

1. Deklare Consortium, 1995, “DEKLARE Small Book—ESPRIT Project 6522,” Final Project Report, CEE.

2. Moka Consortium, 2000, “Moka User Guide, Deliverable 1.3,” Annexe B, AIT Esprit Project No. 25418.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3