Affiliation:
1. School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 e-mail:
Abstract
Computational fluid dynamics (CFD) has been unable to reliably predict aeration and drag torque in clutches. In this study, a CFD method was developed to reliably predict the onset of aeration and drag torque as a function of the clutch's rotational speed. This study showed that though the oil and air behave as if they are incompressible at steady-state, the formulation must account for the compressible nature of the gas and the unsteady processes that occur before reaching steady-state. This study also showed that the dynamic nature of the contact angle between the oil and the stationary disk must be accounted for to predict drag torque and aeration as a function of rotational speed, and a model of the dynamic-contact angle was developed.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献