Numerical Modeling and Analysis of Energy-Assisted Compression Ignition of Varying Cetane Number Jet Fuels for High-Altitude Operation

Author:

Sapra Harsh Darshan1,Hessel Randy1,Amezcua Eri1,Stafford Jacob1,Miganakallu Niranjan1,Rothamer David1,Kim Kenneth2,Kweon Chol-Bum M.2,Kokjohn Sage1

Affiliation:

1. University of Wisconsin , Madison, Wisconsin, United States

2. U.S. Army DEVCOM Army Research Laboratory , Aberdeen Proving Ground, Maryland, United States

Abstract

Abstract Computational Fluid Dynamics (CFD) simulations are performed to study the potential of Energy-Assisted Compression Ignition (EACI) strategy for enabling ignition and enhancing combustion of different cetane number jet fuels during high-altitude operation. EACI employs an ignition assistant (IA), which is an advanced glow-plug design with the ability to sustain higher temperatures for prolonged periods, to provide the necessary ignition energy for precise ignition control and enhanced combustion. In the numerical simulations, the combustion chemistry solver is coupled with a multi-component wide distillation fuel mechanism, energy source modeling, and a turbulence-chemistry interaction model to accurately capture the Ignition Assisted-combustion. The simulation is first validated against optical engine measurements for CN 48 jet fuel and then transferred to another single-cylinder test engine to study the ignition and combustion characteristics of EACI with CN 35 jet fuel at varying IA temperatures. Simulation results show that EACI significantly improves fuel ignitability. Ignition delay reductions for CN 48 fuel of 57% and CN 35 fuel of 25% are noted at IA temperatures of 1550 K and 1405 K compared to when the IA is switched off. Furthermore, EACI improved the combustion efficiency to 99.7% compared to the 90% estimated for the IA off case in the optical engine.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3