Dynamic Weight-Shifting for Improved Maneuverability and Rollover Prevention in High-Speed Mobile Manipulators

Author:

Storms Justin1,Tilbury Dawn2

Affiliation:

1. Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

2. Professor Fellow ASME Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

Abstract

Mobile manipulators have reduced maneuverability and risk rolling over when operated at high speeds. One of the main contributing factors is the higher center of gravity (CG) due to the manipulator arm. This paper proposes a new dynamic weight-shifting method that uses the manipulator arm on the mobile robot to improve maneuverability and reduce rollover risk. A control law is developed such that the manipulator arm keeps a low CG and the contribution of the reaction moments from its inertia is small in comparison to the reaction moments due to gravity. A linear dynamic model is used to analyze the effect of the arm design (link length, mass, etc.) on the roll dynamics. A higher fidelity nonlinear simulation is used to evaluate roll reduction and the impact on handling dynamics. Last, the dynamic weight-shifting method is implemented in hardware. With regard to reducing rollover risk, simulation results from the nonlinear model (NLM) show a 29% reduction in wheel normal load transfer by using the proposed method. In terms of improving maneuverability, experimental results with hardware demonstrate a 13% increase in lateral acceleration when using dynamic weight-shifting. By reducing the vehicle's roll motion, dynamic weight-shifting can increase safe operating speeds and maneuverability.

Funder

Tank Automotive Research, Development and Engineering Center

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference29 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3