The Effect of Age on Residual Strain in the Rat Aorta

Author:

Badreck-Amoudi A.1,Patel C. K.1,Kane T. P. C.1,Greenwald S. E.1

Affiliation:

1. Department of Morbid Anatomy, Royal London Hospital, Whitechapel Road, London E1 1BB, England

Abstract

Residual stress is observed in many parts of the cardiovascular system and is thought to reduce transmural stress gradients due to intravascular pressure. Its development is closely associated with normal growth and pathological remodeling, although there appear to be few previous reports of the relationship between aging and residual stress. We have estimated residual strain (an indicator of the magnitude of residual stress) at ten sites along the aorta of rats aged 2.5 to 56 weeks by measuring the degree to which rings of vessel spring open when cut (opening angle). At all ages the opening angle decreased along the aorta, reaching a minimum near the renal arteries and increasing toward the aorto-iliac bifurcation, a result that confirms previous studies. During growth, although the unloaded circumference of the aorta increased steadily, the wall thickness and medial surface area fell to a minimum at the age of 6 weeks before continuing a steady increase. Similarly, the opening angle decreased between the ages of 2.5 and 6 weeks, thereafter increasing with age. In the abdominal aorta, a strong correlation between opening angle and wall thickness relative to midwall radius (h/R) was seen; whereas in the thoracic segment, in which no increase in h/R with age occurred, no such relationship was found. These observations are in keeping with a recently proposed hypothesis that residual stress will change in response to growth-related changes in vessel geometry driven by a tendency to minimize the nonuniform stress distribution inevitably found in pressurized thick-walled cylinders.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3