Initiation Pressure and Corresponding Initiation Mode of Drilling Induced Fracture in Pressure Depleted Reservoir

Author:

Gao Qi1,Cheng Yuanfang1,Yan Chuanliang2,Jiang Long2,Han Songcai2

Affiliation:

1. College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China e-mail:

2. College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

With the production of oil and gas from the reservoir for a long period of time, pore pressure will decline from the initial value to a lower level, which narrows the safety mud weight window, and consequently, makes it easier to generate the drilling induced fracture (DIF). In this paper, a new analytical model is proposed for predicting initiation pressure and corresponding initiation mode of DIF in the pressure depleted reservoir. The effect of pore pressure decline on stress field is considered. Formation around the borehole is divided into plastic zone and elastic zone according to the geomechanical parameters, and small deformation theory is adopted in both of the plastic zone and the elastic zone. For the plastic zone, the nonlinear constitutive relationship is captured using equivalent stress and equivalent strain. In addition, excess pore pressure theory is introduced to describe the pore pressure change during the drilling process owing to the formation of mudcake on the borehole wall. Then, the stress and pore pressure distribution in these two zones and the radius of the plastic zone are obtained. Meanwhile, the theoretical formula of initiation pressure and the corresponding initiation mode of DIF are derived. The reliability of the new model is validated by comparing the obtained results with other published models and the field measured data.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3