Affiliation:
1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2. Downhole Service Company, Shengli Petroleum Engineering Co., Ltd. SINOPEC, Dongying 257000, Shandong, China
Abstract
With the worldwide decline in conventional oil production, tremendous unconventional resources, such as low-permeability reservoirs, are becoming increasingly important. Cyclic water injection (CWI) as an oil recovery method has attracted increasing attention in the present environment of low oil prices. However, the optimal CWI strategy is difficult to determine for a mature oilfield due to the involvement of multiple wells with multiple operational parameters. Thus, our main focus in this paper is to present a novel and systematic approach to optimize CWI strategies by studying a typical low-permeability, namely, reservoir G21. To this end, a comprehensive method that combines the advantages of streamline simulation and fuzzy comprehensive evaluation (FCE) was proposed to identify water channeling in the reservoir. Second, the reliability of the method was verified using tracer tests. Finally, a new hybrid optimization algorithm, the simulated annealing-genetic algorithm (SAGA), coupled with a reservoir simulator was developed to determine an optimal CWI strategy for the low-permeability reservoir. The results show that the CWI technique is viable as a primary means in the present environment of low oil prices to improve the waterflood performance in low-permeability reservoirs. The oil recovery of the most efficient strategy increases by 6.8% compared to conventional waterflooding. The asymmetric CWI scheme is more efficient than the symmetric CWI scheme for the low-permeability reservoir.
Funder
"China University of Petroleum, Beijing"
Ministry of Education of the People's Republic of China
Ministry of Science and Technology of the People's Republic of China
Natural Science Foundation of Shandong Province
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献