Computationally Optimizing the Compliance of Multilayered Biomimetic Tissue Engineered Vascular Grafts

Author:

Tamimi Ehab A.1,Ardila Diana Catalina1,Ensley Burt D.2,Kellar Robert S.3,Vande Geest Jonathan P.4

Affiliation:

1. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 e-mail:

2. Protein Genomics, Inc, Sedona, AZ 86336 e-mail:

3. Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ 86011; Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 e-mail:

4. Mem. ASME Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213; McGowan Institute for Regenerative Medicine, 300 Technology Drive, Pittsburgh, PA 15219 e-mail:

Abstract

Coronary artery bypass grafts used to treat coronary artery disease (CAD) often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft (TEVG) composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50, and 20:80) were mechanically characterized. The stress–strain data were used to develop predictive models, which were used as part of an optimization scheme that was implemented to determine the ratios of G:PCL and T:PCL and the thickness of the individual layers within a TEVG that would compliance match a target compliance value. The hypocompliant, isocompliant, and hypercompliant grafts had target compliance values of 0.000256, 0.000568, and 0.000880 mmHg−1, respectively. Experimental validation of the optimization demonstrated that the hypercompliant and isocompliant grafts were not statistically significant from their respective target compliance values (p-value = 0.37 and 0.89, respectively). The experimental compliance values of the hypocompliant graft were statistically significant than their target compliance value (p-value = 0.047). We have successfully demonstrated a design optimization scheme that can be used to fabricate multilayered and biomimetic vascular grafts with targeted geometry and compliance.

Funder

National Institutes of Health

National Institute of Biomedical Imaging and Bioengineering

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3