Well-Posed Formulations for Nonholonomic Mechanical System Dynamics

Author:

Haug Edward J.1

Affiliation:

1. Department of Mechanical Engineering, The University of Iowa, Iowa City, IA 52244

Abstract

Abstract Four formulations of nonholonomic mechanical system dynamics, with both holonomic and differential constraints, are presented and shown to be well posed; i.e., solutions exist, are unique, and depend continuously on problem data. They are (1) the d'Alembert variational formulation, (2) a broadly applicable manifold theoretic extension of Maggi's equations that is a system of first-order ordinary differential equations (ODE), (3) Lagrange multiplier-based index 3 differential-algebraic equations (index 3 DAE), and (4) Lagrange multiplier-based index 0 differential-algebraic equations (index 0 DAE). The ODE formulation is shown to be well posed, as a direct consequence of the theory of ODE. The variational formulation is shown to be equivalent to the ODE formulation, hence also well posed. Finally, the index 3 DAE and index 0 DAE formulations are shown to be equivalent to the variational and ODE formulations, hence also well posed. These results fill a void in the literature and provide a theoretical foundation for nonholonomic mechanical system dynamics that is comparable to the theory of ODE.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3