System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities Using Phase-Change Materials

Author:

Nafis Bakhtiyar Mohammad1,Iradukunda Ange-Christian1,Huitink David1

Affiliation:

1. Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract

Abstract Electronic packaging for automotive applications are at particular risk of thermomechanical failure due to the naturally harsh conditions it is exposed to. With the rise of electric and hybrid electric vehicles (EVs and HEVs), combined with a desire to miniaturize, the challenge of removing enough heat from electronic devices in automotive vehicles is evolving. This paper closely examines the new challenges in thermal management in various driving environments and aims to classify each existing cooling method in terms of performance. Particular focus is placed upon emerging solutions regarded to hold great potential, such as phase-change materials (PCMs). PCMs have been regarded for some time as a means of transferring heat quickly away from the region with the electronic components and are widely regarded as a possible means of carrying out cooling in large scale from small areas, because of their high latent heat of fusion, high specific heat, temperature stability, and small volume change during phase change, etc. They have already been utilized as a method of passive cooling in electronics in various ways, but their adoption in automotive power electronics, such as in traction inverters, has yet to be fulfilled. A brief discussion is made on some of the potential areas of application and challenges relating to more widespread adoption of PCMs, with reference to a case study using computational model of a commercially available power module used in automotive applications.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Electronics Cooling in the Automotive Environment;Electron. Cooling,2010

2. New Attempt of Forced-Air Cooling for High Heat-Flux Applications,2004

3. Loop Heat Pipe Technology for Cooling Computer Servers,2008

4. Effect of Inclination on Saturation Boiling of PF-5060 Dielectric Liquid on 80-and 137-μm Thick Copper Micro-Porous Surfaces;Int. J. Thermal Sci.,2012

5. Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels;Int. J. Multiphase Flow,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3