Effects of Boot-Shaped Rib On Heat Transfer Characteristics of Internal Cooling Turbine Blades

Author:

Pham Ky-Quang1,Nguyen Quang-Hai2,Vu Tai-Duy3,Dinh Cong-Truong3

Affiliation:

1. School of Excellent Education, Vietnam Maritime University, No 484, Lach Tray Street, Le Chan District, Hai Phong City, 840225, Vietnam

2. Viettel Aerospace Institute, No. 380, Lac Long Quan Road, Tay Ho District, Hanoi, 100000, Vietnam

3. Department of Aeronautical and Space Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi, 100000, Vietnam

Abstract

Abstract Gas turbine engine has been widely applied to many heavy industries, such as marine propulsion and aerospace fields. Increasing turbine inlet temperature is one of the major ways to improve the thermal efficiency of gas turbines. Internal cooling for gas turbine cooling system is one of the most commonly used approaches to reduce the temperature of blades by casting various kinds of ribs in serpentine passages to enhance the heat transfer between the coolant and hot surface of gas turbine blades. This paper presents an investigation of boot-shaped rib design to increase the heat transfer performances in the internal cooling turbine blades for gas turbine engines. By varying the design parameter configuration, the airflow is taken with higher momentum, and the minor vortex being at the front rib is relatively removed. The object of this investigation is increasing the reattachment airflow to wall and reducing the vortex occurring near the rib for improving the performances of heat transfer using three-dimensional Reynolds-averaged Navier-Stokes with the SST model. A parametric study of the boot-shaped rib design was performed using various geometric parameters related to the heel-angle, toe-angle, slope-height and rib-width to find their effect on the Nusselt number, temperature on the ribbed wall, friction factor ratio of the channel and thermal performance factor. The numerical results showed that the heat transfer performances are significantly increased with the heel-angle, toe-angle, slope-height, while that remained relatively constant with the rib-width.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3