Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids

Author:

Marto P. J.1,Lepere V. J.1

Affiliation:

1. Department of Mechanical Engineering, Naval Postgraduate School, Monterey, Calif. 93940

Abstract

Pool boiling heat-transfer measurements were made using a 15.8 mm o.d. plain copper tube and three copper enhanced surfaces: a Union Carbide High Flux surface, a Hitachi Thermoexcel-E surface and a Wieland Gewa-T surface. The dielectric fluids were Freon-113 and Fluorinert FC-72, a perfluorinated organic compound manufactured to cool electronic equipment. Data were taken at atmospheric pressure, and at heat fluxes from 100 W/m2 to 200,000 W/m2. Prior to operation, each test surface was subjected to one of three aging procedures to observe the effect of surface past history upon boiling incipience. For Freon-113 the enhanced surfaces showed a two to tenfold increase in the heat-transfer coefficient when compared to a plain tube, whereas for FC-72 an increase of two to five was measured. The High Flux surface gave the best performance over the range of heat fluxes. The Gewa-T surface did not show as much of an enhancement at low fluxes as the other two surfaces, but at high fluxes its performance improved. In fact, it was the only surface tested which delayed the onset of film boiling with FC-72. The degree of superheat required to activate the enhanced surfaces was sensitive to both past history of the surface and to fluid properties.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3