Structure of Growing Double-Diffusive Convection Cells

Author:

Suzukawa Y.1,Narusawa U.1

Affiliation:

1. Technical Research Center, Nippon Kokan K.K., Kawasaki, Japan

Abstract

When a fluid with a vertical solute gradient is heated from a sidewall, layers of convection cells form along the wall. For an aqueous solution of common salt (i.e., fixed values of Pr and τ), the convection cells will form along the vertical heated wall for values of π(= α(q/k) / β(−dS/dz) ) greater than ∼0.28. This paper reports the experimental investigation of the structure of the growing convection cells when a uniform heat flux is applied at the vertical wall. A series of tests was conducted using a small tank (23 cm high × 16 cm deep × 20 cm wide). Measurements of the vertical temperature distribution in the fluid at five different locations were taken continuously along with shadowgraph pictures to monitor the growth of the convection cells. Based on the set of data thus obtained, the following characteristics of a growing convection cell were found: (a) A convection cell with a vertical height, K, grows laterally into the quiescent fluid at a constant speed, U, and the Reynolds number of a moving front, defined as UH/ν, changes linearly with π on a log-log scale for our experimental range of π = 0.3 – 10. (b) The vertical averaged temperature inside a growing cell is a linear function of the distance from the heated wall over a major portion of the cell. (c) The lateral temperature gradient inside a cell decreases with time, and is proportional to the inverse of the elasped time.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulations of double-diffusive convection in narrow containers;Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics;2012-06

2. Design and Verification of the Pressure-Driven Radial Flow Microrheometer;Tribology Transactions;2008-07-29

3. Periodic intrusions in a stratified fluid;Journal of Fluid Mechanics;2007-05-21

4. The stratified Boycott effect;Journal of Fluid Mechanics;2005-04-25

5. Numerical modelling of convective layers in solar ponds;Solar Energy;2004-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3