Effects of Mass Flux, Flow Quality, Thermal and Surface Properties of Materials on Rewet of Dispersed Flow Film Boiling

Author:

Iloeje O. C.1,Plummer D. N.2,Rohsenow W. M.2,Griffith P.2

Affiliation:

1. Department of Mechanical Engineering, University of Nigeria, Nsukka

2. Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Mass. 02139

Abstract

The effects of mass flux, flow quality, material thermal properties, surface roughness, and surface oxidation on the rewet-wall superheat for dispersed vertical flow were experimentally investigated. The mass fluxes tested were 40.7, 81.4, 169.5 and 271.3 kg/s-m2. Flow qualities varied from 10–90 percent. The test materials were copper, aluminum, and inconel-600. Overall dimensions of the test pieces were 10.16 mm i.d., 25.4 mm o.d., and 25.4 mm long. A smooth inside surface was prepared for each material, with roughness amplitudes of approximately 0.5 μm. Two inconel test pieces had roughnesses of 15–20 μm and 66 μm, respectively. Another inconel piece was oxidized to a thin oxide layer of approximately 1.3 μm. The test fluid was liquid nitrogen. The results indicated that the rewet wall superheat increased with mass flux. The rewet wall superheat decreased with increasing flow quality, with the rate of decrease being more rapid at higher mass fluxes and higher qualities. Increases in wall roughnesses, and the presence of surface oxidation, increased the rewet superheat. The effect of an oxide layer increased with increasing mass flux and decreasing quality, and was thought to result from the decrease in contact angle between the liquid and the oxidized surface. Differences in wall thermal properties were not very significant up to a mass velocity of 81.4 kg/s-m2. Above this mass flux, the copper data did not clearly show the increasing Tmin with increasing mass flux, while the inconel data did. A comparison of Tmin for several materials with different thermal properties therefore was not made above mass flux of 81.4 kg/s-m2.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3