Quantifying Joint Congruence With an Elastic Foundation

Author:

Burson-Thomas Charles B.1,Dickinson Alexander S.1,Browne Martin1

Affiliation:

1. Bioengineering Science Research Group, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Abstract The level of congruence between the articulating surfaces of a diarthrodial joint can vary substantially between individuals. Quantifying joint congruence using the most widespread metric, the “congruence index,” is not straightforward: the areas of the segmented bone that constitute the articular surfaces require accurate identification, their shape must be carefully described with appropriate functions, and the relative orientation of the surfaces measured precisely. In this work, we propose a new method of measuring joint congruence, which does not require these steps. First, a finite element (FE) simulation of an elastic layer compressed between each set of segmented bones is performed. These are then interpreted using the elastic foundation model, enabling an equivalent, but simpler, contact geometry to be identified. From this, the equivalent radius (quantification of joint congruence) is found. This defines the radius of a sphere contacting plane (or “ball on flat”) that produces an equivalent contact to that in each joint. The minimal joint space width (in this joint position) can also be estimated from the FE simulations. The new method has been applied to ten healthy instances of the thumb metacarpophalangeal (MCP) joint. The ten thumb MCPs had similar levels and variability of congruence as the other diarthrodial joints that have been characterized previously. This new methodology enables efficient quantification of joint congruence and minimal joint space width directly from CT- or MRI-derived bone geometry in any relative orientation. It lends itself to large data sets and coupling with kinematic models.

Funder

Directorate-General for Research and Innovation

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Covariance in human limb joint articular morphology;American Journal of Biological Anthropology;2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3