Affiliation:
1. Rolls-Royce Allison, Indianapolis, IN
Abstract
An advanced design system has been developed for combustor flow analysis. The system is based on the finite-volume methodology and is of second-order numerical accuracy. Use of co-located grids and Cartesian velocities offers significant advantages over previous staggered-grids, covariant-velocities based schemes. The physicochemical effects are simulated by the standard k-ε model for turbulence, the eddy-breakup model with a two-step general hydrocarbon chemistry for combustion, and a stochastic Lagrangian transport and evaporation model for spray. The developed design system has been applied to analyze a production gas turbine combustor configuration and several design changes. The calculated exit-plane temperature profiles compare well against full-scale rig data. The trends of the exit temperature profiles, showing the effect of design changes to the geometry and flow-splits of various combustor features, are well predicted. The study demonstrates the developed design system to be a robust and viable tool for analyzing and guiding combustor design.
Publisher
American Society of Mechanical Engineers
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献