Affiliation:
1. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706
2. Brius Technology Inc., 4553 Westgrove Dr, Addison, TX 75001
Abstract
Abstract
Topology optimization (TO) has rapidly evolved from an academic exercise into an exciting discipline with numerous industrial applications. Various TO algorithms have been established, and several commercial TO software packages are now available. However, a major challenge in TO is the post-processing of the optimized models for downstream applications. Typically, optimal topologies generated by TO are faceted (triangulated) models, extracted from an underlying finite element mesh. These triangulated models are dense, poor quality, and lack feature/parametric control. This poses serious challenges to downstream applications such as prototyping/testing, design validation, and design exploration. One strategy to address this issue is to directly impose downstream requirements as constraints in the TO algorithm. However, this not only restricts the design space, it may even lead to TO failure. Separation of post-processing from TO is more robust and flexible. The objective of this paper is to provide a critical review of various post-processing methods and categorize them based both on targeted applications and underlying strategies. The paper concludes with unresolved challenges and future work.
Funder
National Science Foundation
Subject
Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献