Thermodynamics Analyses of Porous Microchannels With Asymmetric Thick Walls and Exothermicity: An Entropic Model of Microreactors

Author:

Elliott Alexander1,Torabi Mohsen2,Karimi Nader3

Affiliation:

1. School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

2. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mails: ;

3. School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK e-mail:

Abstract

This paper presents a study of the thermal characteristics and entropy generation of a porous microchannel with thick walls featuring uneven thicknesses. Two sets of asymmetric boundary conditions are considered. The first includes constant temperatures at the surface of the outer walls, with the lower wall experiencing a higher temperature than the upper wall. The second case imposes a constant heat flux on the lower wall and a convection boundary condition on the upper wall. These set thermal models for microreactors featuring highly exothermic or endothermic reactions such as those encountered in fuel reforming processes. The porous system is considered to be under local thermal nonequilibrium (LTNE) condition. Analytical solutions are, primarily, developed for the temperature and local entropy fields and then are extended to the total entropy generation within the system. It is shown that the ratio of the solid to fluid effective thermal conductivity and the internal heat sources are the most influential parameters in the thermal and entropic behaviors of the system. In particular, the results demonstrate that the internal heat sources can affect the entropy generation in a nonmonotonic way and that the variation of the total entropy with internal heat sources may include extremum points.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3