A Theoretical and Experimental Investigation of a Gas-Operated Bearing Damper for Turbomachinery: Part I—Theoretical Model and Predictions

Author:

Sundararajan P.1,Vance J. M.1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

This is the first (Part I) of two papers describing recent results of the research program directed at developing a vibration damper suitable for high-temperature turbomachinery applications. It is expected that such dampers will replace squeeze-film dampers, which use oil as the working fluid and have limitations at higher temperatures. A novel gas-operated bearing damper has been evaluated analytically and experimentally for its damping characteristics. A theory based on the isentropic assumptions predicts the damper performance characteristics reasonably well. A maximum damping level of 2311 N-m/s (13.2 lb-s/in.) at a frequency of 100 Hz was measured with a single actuator of the gas damper. Since many such actuators could be placed circumferentially around the squirrel cage, considerable damping levels can be realized. The study also shows that significantly higher damping levels can be achieved by modifying the current design. Part I describes the theoretical model that has been developed based on isentropic assumptions. This model is an improved version of the previous theory (Vance et al., 1991) and includes the supply groove effects, dynamic area changes of the inlet feeding holes, and the effects of flow choking on damper behavior. The governing equations are derived and theoretical predictions using these equations have been made for two hardware designs that were experimentally investigated (see Part II for experimental results).

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Actively Controlled Bearing Dampers for Aircraft Engine Applications;Journal of Engineering for Gas Turbines and Power;2000-05-15

2. Hybrid Brush Pocket Damper Seals for Turbomachinery;Journal of Engineering for Gas Turbines and Power;2000-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3