The Thermal Stability of Molten Lithium–Sodium–Potassium Carbonate and the Influence of Additives on the Melting Point

Author:

Olivares Rene I.1,Chen Chunlin,Wright Steven2

Affiliation:

1. Research Scientist CSIRO Energy Centre, Mayfield West, Newcastle, NSW 2304, Australia e-mail:

2. CSIRO Process Science and Engineering, Clayton, Melbourne, Vic 3169, Australia

Abstract

The thermal stability of a molten LiNaK carbonate salt, potentially suitable for thermal energy storage, was studied up to a temperature of 1000 °C. The salt investigated was the eutectic Li2CO3–Na2CO3–K2CO3 in the proportions 32.1–33.4–34.5 wt. % and the study was done by simultaneous differential scanning calorimetry (DSC)/thermogravimetric–mass spectrometric (TG–MS) analysis in gas atmospheres of argon, air, and CO2. It was found that (i) under a blanket gas atmosphere of CO2 the LiNaK carbonate salt is stable up to at least 1000 °C. (ii) In an inert atmosphere of argon, the salt evolves gaseous CO2 soon after melting and begins to decompose at between 710 °C and 715 °C with acceleration in the CO2 evolution rate from the melt. An increase in the rate of weight loss is also observed after 707 °C. (iii) Under a blanket atmosphere of air, the gaseous CO2 evolution from the salt is observed to commence at 530 °C, the onset of decomposition detected by DSC analysis at 601 °C and the rapid rate of weight loss determined by TG analysis at 673 °C. The melting point of the LiNaK carbonate studied was between 400 °C and 405 °C. Thermodynamic modeling with Multi-Phase-Equilibrium (MPE) software developed in CSIRO Process Science and Engineering indicated that additives such as NaNO3, KCl, and NaOH lower the melting point of the LiNaK carbonate eutectic, and this was experimentally verified.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3