Effect of Materials on the Mechanism of Electric Discharge Machining (E.D.M.)

Author:

Erden A.1

Affiliation:

1. Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey

Abstract

Electric Discharge Machining process is investigated both theoretically and experimentally to determine the effects of electrode materials on the machining performance. For this purpose a single and isolated spark is physically and mathematically modelled, and its three phases; viz., Breakdown, Discharge and Erosion are investigated. Resolidified electrode materials as suspended particles in the dielectric liquid are found to be the most significant factor in the breakdown phase. Mathematical expressions relating the time lags to particle concentration are given which can be used to determine the effects of particle concentration on the machining performance. Discharge properties are shown to be dependent on the discharge medium which includes vapours of the electrode materials. The polarity effect has been studied both theoretically and experimentally. Some qualitative explanation is given for the erosion phase. Importance of electrical forces is discussed and a simple mathematical expression is given for the erosion phase. It is concluded that optimum machining conditions can only be obtained by proper selection of the tool material, workpiece material and discharge medium since they affect the initiation and development of the discharge and erosion of electrode materials.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3