Shape Optimization of a Multi-Element Foil Using an Evolutionary Algorithm

Author:

Lee Yu-Tai1,Ahuja Vineet2,Hosangadi Ashvin2,Ebert Michael1

Affiliation:

1. Naval Surface Warfare Center, Carderock Division, West Bethesda, MD 20817

2. CRAFT Tech, Pipersville, PA 18947

Abstract

A movable flap with a NACA foil cross section serves as a common control surface for underwater marine vehicles. To augment the functionality of the control surface, a tab assisted control (TAC) surface was experimentally tested to improve its performance especially at large angles of operation. The advantage of the TAC foil could be further enhanced with shape memory alloy (SMA) actuators to control the rear portion of the control surface to form a flexible tab (or FlexTAC) surface. Hybrid unstructured Reynolds averaged Navier–Stokes (RANS) based computational fluid dynamics (CFD) calculations were used to understand the flow physics associated with the multi-element FlexTAC foil with a stabilizer, a flap, and a flexible tab. The prediction results were also compared with the measured data obtained from both the TAC and the FlexTAC experiments. The simulations help explain subtle differences in performance of the multi-element airfoil concepts. The RANS solutions also predict the forces and moments on the surface of the hydrofoil with reasonable accuracy and the RANS procedure is found to be critical for use in a design optimization framework because of the importance of flow separation/turbulent effects in the gap region between the stabilizer and the flap. A systematic optimization study was also carried out with a genetic algorithm (GA) based design optimization procedure. This procedure searches the complex design landscape in an efficient and parallel manner. The fitness evaluations in the optimization procedure were performed with the RANS based CFD simulations. The mesh regeneration was carried out in an automated manner through a scripting process within the grid generator. The optimization calculation is performed simultaneously on both the stabilizer and the nonflexible portion of the flap. Shape changes to the trailing edge of the stabilizer strongly influence the secondary flow patterns that set up in the gap region between the stabilizer and the flap. They were found to have a profound influence on force and moment characteristics of the multi-element airfoil. A new control surface (OptimTAC) was constructed as a result of the design optimization calculation and was shown to have improved lift, drag, and torque characteristics over the original FlexTAC airfoil at high flap angles.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Shape Memory Alloy Actuator for Tab Assisted Control Surface Application;Carpenter

2. Tab-Assisted Control Surface for Marine Application;Nguyen

3. Gowing, S., Lee, Y. T., Carpenter, B., Atsavapranee, P., and Hess, D., 2004, “FlexTAC: An Advanced Submarine Control Surface and Actuation System,” AIAA Paper No. 2004-902.

4. Flow Predictions and Shape Optimization of A Multi-Element Airfoil;Lee

5. Prediction of Forces and Moments of Rudders With Flap and Tab, Part I. 2D Airfoil with Flap and Tab;Sung

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3